AN OVERVIEW OF Λ-TYPE OPERATIONS ON QUASI-SYMMETRIC FUNCTIONS
نویسندگان
چکیده
منابع مشابه
Noncommutative Symmetric Functions VII: Free Quasi-Symmetric Functions Revisited
This article is essentially an appendix to [4]. We gather here some useful properties of the algebra FQSym of free quasi-symmetric functions which were overlooked in [4]. Recall that FQSym is a subalgebra of the algebra of noncommutative polynomials in infinitely many variables ai which is mapped onto Gessel’s algebra of quasi-symmetric functions QSym by the commutative image ai 7→ xi of K〈A〉. ...
متن کاملFree Quasi-symmetric Functions of Arbitrary Level
We introduce analogues of the Hopf algebra of Free quasi-symmetric functions with bases labelled by colored permutations. As applications, we recover in a simple way the descent algebras associated with wreath products Γ ≀ Sn and the corresponding generalizations of quasi-symmetric functions. Finally, we obtain Hopf algebras of colored parking functions, colored non-crossing partitions and park...
متن کاملSymmetric and quasi-symmetric functions associated to polymatroids
To every subspace arrangement X we will associate symmetric functions P[X] and H[X]. These symmetric functions encode the Hilbert series and the minimal projective resolution of the product ideal associated to the subspace arrangement. They can be defined for discrete polymatroids as well. The invariant H[X] specializes to the Tutte polynomial T [X]. Billera, Jia and Reiner recently introduced ...
متن کاملCanonical Characters on Quasi-Symmetric Functions and Bivariate Catalan Numbers
Every character on a graded connected Hopf algebra decomposes uniquely as a product of an even character and an odd character [2]. We obtain explicit formulas for the even and odd parts of the universal character on the Hopf algebra of quasi-symmetric functions. They can be described in terms of Legendre’s beta function evaluated at halfintegers, or in terms of bivariate Catalan numbers: C(m, n...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2001
ISSN: 0092-7872,1532-4125
DOI: 10.1081/agb-100106001